Cite

Copy

Tap on and choose 'Add to Home Screen' to create a shortcut app

Tap on and choose 'Install/Install App' to create a shortcut app

References for Molecular Biology of Brain Tumors in Children

This page was last updated on August 19th, 2022

  1. Hegi ME, Diserens AC, Gorlia T, et al.: MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 352(10):997-1003, 2005
  2. Pollack IF, Hamilton RL, Sobol RW, et al.: O6-methylguanine-DNA methyltransferase expression strongly correlates with outcome in childhood malignant gliomas: results from the CCG-945 Cohort. J Clin Oncol. 24(21):3431-7, 2006
  3. Donson AM, Addo-Yobo SO, Handler MH, et al.: MGMT promoter methylation correlates with survival benefit and sensitivity to temozolomide in pediatric glioblastoma. Pediatr Blood Cancer. 48(4):403-7, 2007
  4. Cairncross JG, Ueki K, Zlatescu MC, et al.: Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst. 90(19):1473-9, 1998
  5. Smith JS, Perry A, Borell TJ, et al.: Alterations of chromosome arms 1p and 19q as predictors of survival in oligodendrogliomas, astrocytomas, and mixed oligoastrocytomas. J Clin Oncol. 18(3):636-45, 2000
  6. Nowell PC, Hungerford DA: Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst. 25:85-109, 1960
  7. Rowley JD: Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 243(5405):290-3, 1973
  8. Druker BJ, Tamura S, Buchdunger E, et al.: Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 2(5):561-6, 1996
  9. Druker BJ, Sawyers CL, Kantarjian H, et al.: Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med. 344(14):1038-42, 2001
  10. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391(6669):806-11, 1998
  11. Chapman EJ, Carrington JC: Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet. 8(11):884-96, 2007
  12. Kloosterman WP, Plasterk RH: The diverse functions of microRNAs in animal development and disease. Dev Cell. 11(4):441-50, 2006
  13. Scherr M, Morgan MA, Eder M: Gene silencing mediated by small interfering RNAs in mammalian cells. Curr Med Chem. 10(3):245-56, 2003
  14. Bar M, Wyman SK, Fritz BR, et al.: MicroRNA discovery and profiling in human embryonic stem cells by deep sequencing of small RNA libraries. Stem Cells. 26(10):2496-505, 2008
  15. Svoboda P, Flemr M: The role of miRNAs and endogenous siRNAs in maternal-to-zygotic reprogramming and the establishment of pluripotency. EMBO Rep. 11(8):590-7, 2010
  16. Li M, Lee KF, Lu Y, et al.: Frequent amplification of a chr19q13.41 microRNA polycistron in aggressive primitive neuroectodermal brain tumors. Cancer Cell. 16(6):533-46, 2009
  17. Papagiannakopoulos T, Shapiro A, Kosik KS: MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res. 68(19):8164-72, 2008
  18. Calin GA, Dumitru CD, Shimizu M, et al.: Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 99(24):15524-9, 2002
  19. He L, Thomson JM, Hemann MT, et al.: A microRNA polycistron as a potential human oncogene. Nature. 435(7043):828-33, 2005
  20. Johnson SM, Grosshans H, Shingara J, et al.: RAS is regulated by the let-7 microRNA family. Cell. 120(5):635-47, 2005
  21. Birks DK, Barton VN, Donson AM, Handler MH, Vibhakar R, Foreman NK: Survey of MicroRNA expression in pediatric brain tumors. Pediatr Blood Cancer. 56(2):211-6, 2011
  22. Liu J, Carmell MA, Rivas FV, et al.: Argonaute2 is the catalytic engine of mammalian RNAi. Science. 305(5689):1437-41, 2004
  23. Meister G, Landthaler M, Patkaniowska A, et al.: Human Argonaute 2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell. 15(2):185-97, 2004
  24. Lim LP, Lau NC, Garrett-Engele P, et al.: Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 433(7027):769-73, 2005
  25. Bagga S, Bracht J, Hunter S, et al.: Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell. 122(4):553-63, 2005
  26. Zhao TY, Zou SP, Alimova YV, et al.: Short interfering RNA-induced gene silencing is transmitted between cells from the mammalian central nervous system. J Neurochem. 98(5):1541-50, 2006
  27. Ohshima K, Inoue K, Fujiwara A, et al.: Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One. 5(10):e13247, 2010
  28. Chernolovskaya EL, Zenkova MA: Chemical modification of siRNA. Curr Opin Mol Ther. 12(2):158-67, 2010
  29. Phalon C, Rao DD, Nemunaitis J: Potential use of RNA interference in cancer therapy. Expert Rev Mol Med. 12:e26, 2010
  30. Kantarjian H, Talpaz M, O’Brien S, et al.: Survival benefit with imatinib mesylate therapy in patients with accelerated-phase chronic myelogenous leukemia–comparison with historic experience. Cancer. 103(10):2099-108, 2005
  31. Essat M, Cooper K: Imatinib as adjuvant therapy for gastrointestinal stromal tumours – A systematic review. Int J Cancer. 2010
  32. Chamberlain MC: Emerging clinical principles on the use of bevacizumab for the treatment of malignant gliomas. Cancer. 116(17):3988-99, 2010
  33. Narayana A, Kunnakkat S, Chacko-Mathew J, et al.: Bevacizumab in recurrent high-grade pediatric gliomas. Neuro Oncol. 12(9):985-90, 2010
  34. Gururangan S, Chi SN, Young Poussaint T, et al.: Lack of efficacy of bevacizumab plus irinotecan in children with recurrent malignant glioma and diffuse brainstem glioma: a Pediatric Brain Tumor Consortium study. J Clin Oncol. 28(18):3069-75, 2010
  35. Louis DN, Ohgaki H, Wiestler OD, et al.: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114(2):97-109, 2007
  36. Eberhart CG, Tihan T, Burger PC: Nuclear localization and mutation of beta-catenin in medulloblastomas. J Neuropathol Exp Neurol. 59(4):333-7, 2000
  37. Thompson MC, Fuller C, Hogg TL, et al.: Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol. 24(12):1924-31, 2006
  38. Baeza N, Masuoka J, Kleihues P, Ohgaki H: AXIN1 mutations but not deletions in cerebellar medulloblastomas. Oncogene. 22(4):632-6, 2003
  39. Huang H, Mahler-Araujo BM, Sankila A, et al.: APC mutations in sporadic medulloblastomas. Am J Pathol. 156(2):433-7, 2000
  40. Zurawel RH, Chiappa SA, Allen C, Raffel C: Sporadic medulloblastomas contain oncogenic beta-catenin mutations. Cancer Res. 58(5):896-9, 1998
  41. Northcott PA, Korshunov A, Witt H, et al.: Medulloblastoma Comprises Four Distinct Molecular Variants. J Clin Oncol. 2010
  42. Kool M, Koster J, Bunt J, et al.: Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One. 3(8):e3088, 2008
  43. Yee DS, Tang Y, Li X, et al.: The Wnt inhibitory factor 1 restoration in prostate cancer cells was associated with reduced tumor growth, decreased capacity of cell migration and invasion and a reversal of epithelial to mesenchymal transition. Mol Cancer. 9:162, 2010
  44. Dai J, Hall CL, Escara-Wilke J, Mizokami A, Keller JM, Keller ET: Prostate cancer induces bone metastasis through Wnt-induced bone morphogenetic protein-dependent and independent mechanisms. Cancer Res. 68(14):5785-94, 2008
  45. Huang CL, Liu D, Ishikawa S, et al.: Wnt1 overexpression promotes tumour progression in non-small cell lung cancer. Eur J Cancer. 44(17):2680-8, 2008
  46. Zerlin M, Julius MA, Kitajewski J: Wnt/Frizzled signaling in angiogenesis. Angiogenesis. 11(1):63-9, 2008
  47. Niu G, Chen X: Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Curr Drug Targets. 11(8):1000-17, 2010
  48. Attard TM, Giglio P, Koppula S, Snyder C, Lynch HT: Brain tumors in individuals with familial adenomatous polyposis: a cancer registry experience and pooled case report analysis. Cancer. 109(4):761-6, 2007
  49. Benchabane H, Ahmed Y: The adenomatous polyposis coli tumor suppressor and Wnt signaling in the regulation of apoptosis. Adv Exp Med Biol. 656:75-84, 2009
  50. Roderick HL, Cook SJ: Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer. 8(5):361-75, 2008
  51. Bergner A, Huber RM: Regulation of the endoplasmic reticulum Ca(2+)-store in cancer. Anticancer Agents Med Chem. 8(7):705-9, 2008
  52. Ishitani T, Kishida S, Hyodo-Miura J, et al.: The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling. Mol Cell Biol. 23(1):131-9, 2003
  53. Kongkham PN, Northcott PA, Croul SE, Smith CA, Taylor MD, Rutka JT: The SFRP family of WNT inhibitors function as novel tumor suppressor genes epigenetically silenced in medulloblastoma. Oncogene. 29(20):3017-24, 2010
  54. Vibhakar R, Foltz G, Yoon JG, et al.: Dickkopf-1 is an epigenetically silenced candidate tumor suppressor gene in medulloblastoma. Neuro Oncol. 9(2):135-44, 2007
  55. Bos CL, Kodach LL, van den Brink GR, et al.: Effect of aspirin on the Wnt/beta-catenin pathway is mediated via protein phosphatase 2A. Oncogene. 25(49):6447-56, 2006
  56. Nath N, Kashfi K, Chen J, Rigas B: Nitric oxide-donating aspirin inhibits beta-catenin/T cell factor (TCF) signaling in SW480 colon cancer cells by disrupting the nuclear beta-catenin-TCF association. Proc Natl Acad Sci U S A. 100(22):12584-9, 2003
  57. Park CH, Chang JY, Hahm ER, Park S, Kim HK, Yang CH: Quercetin, a potent inhibitor against beta-catenin/Tcf signaling in SW480 colon cancer cells. Biochem Biophys Res Commun. 328(1):227-34, 2005
  58. He B, Reguart N, You L, et al.: Blockade of Wnt-1 signaling induces apoptosis in human colorectal cancer cells containing downstream mutations. Oncogene. 24(18):3054-8, 2005
  59. DeAlmeida VI, Miao L, Ernst JA, Koeppen H, Polakis P, Rubinfeld B: The soluble wnt receptor Frizzled8CRD-hFc inhibits the growth of teratocarcinomas in vivo. Cancer Res. 67(11):5371-9, 2007
  60. Shan J, Shi DL, Wang J, Zheng J: Identification of a specific inhibitor of the dishevelled PDZ domain. Biochemistry. 44(47):15495-503, 2005
  61. Zhang Y, Appleton BA, Wiesmann C, et al.: Inhibition of Wnt signaling by Dishevelled PDZ peptides. Nat Chem Biol. 5(4):217-9, 2009
  62. de Haas T, Hasselt N, Troost D, et al.: Molecular risk stratification of medulloblastoma patients based on immunohistochemical analysis of MYC, LDHB, and CCNB1 expression. Clin Cancer Res. 14(13):4154-60, 2008
  63. Zha X, Wang F, Wang Y, et al.: Lactate dehydrogenase B is critical for hyperactive mTOR-mediated tumorigenesis. Cancer Res. 71(1):13-8, 2011
  64. Johnson RL, Rothman AL, Xie J, et al.: Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science. 272(5268):1668-71, 1996
  65. Hahn H, Wicking C, Zaphiropoulous PG, et al.: Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell. 85(6):841-51, 1996
  66. Hahn H, Christiansen J, Wicking C, et al.: A mammalian patched homolog is expressed in target tissues of sonic hedgehog and maps to a region associated with developmental abnormalities. J Biol Chem. 271(21):12125-8, 1996
  67. Ingham PW, McMahon AP: Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 15(23):3059-87, 2001
  68. Wong SY, Reiter JF: The primary cilium at the crossroads of mammalian hedgehog signaling. Curr Top Dev Biol. 85:225-60, 2008
  69. Low JA, de Sauvage FJ: Clinical experience with Hedgehog pathway inhibitors. J Clin Oncol. 28(36):5321-6, 2010
  70. Slade I, Murray A, Hanks S, et al.: Heterogeneity of familial medulloblastoma and contribution of germline PTCH1 and SUFU mutations to sporadic medulloblastoma. Fam Cancer. 2010
  71. Kinzler KW, Vogelstein B: The GLI gene encodes a nuclear protein which binds specific sequences in the human genome. Mol Cell Biol. 10(2):634-42, 1990
  72. Duman-Scheel M, Weng L, Xin S, Du W: Hedgehog regulates cell growth and proliferation by inducing Cyclin D and Cyclin E. Nature. 417(6886):299-304, 2002
  73. Bigelow RL, Chari NS, Unden AB, et al.: Transcriptional regulation of bcl-2 mediated by the sonic hedgehog signaling pathway through gli-1. J Biol Chem. 279(2):1197-205, 2004
  74. Yoo YA, Kang MH, Kim JS, Oh SC: Sonic hedgehog signaling promotes motility and invasiveness of gastric cancer cells through TGF-beta-mediated activation of the ALK5-Smad 3 pathway. Carcinogenesis. 29(3):480-90, 2008
  75. Katoh Y, Katoh M: Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Curr Mol Med. 9(7):873-86, 2009
  76. Taipale J, Chen JK, Cooper MK, et al.: Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature. 406(6799):1005-9, 2000
  77. Chen JK, Taipale J, Cooper MK, Beachy PA: Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev. 16(21):2743-8, 2002
  78. Berman DM, Karhadkar SS, Hallahan AR, et al.: Medulloblastoma growth inhibition by hedgehog pathway blockade. Science. 297(5586):1559-61, 2002
  79. Coon V, Laukert T, Pedone CA, Laterra J, Kim KJ, Fults DW: Molecular therapy targeting Sonic hedgehog and hepatocyte growth factor signaling in a mouse model of medulloblastoma. Mol Cancer Ther. 9(9):2627-36, 2010
  80. Tremblay MR, Lescarbeau A, Grogan MJ, et al.: Discovery of a potent and orally active hedgehog pathway antagonist (IPI-926). J Med Chem. 52(14):4400-18, 2009
  81. Kim J, Tang JY, Gong R, et al.: Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell. 17(4):388-99, 2010
  82. Bangaru ML, Chen S, Woodliff J, Kansra S: Curcumin (diferuloylmethane) induces apoptosis and blocks migration of human medulloblastoma cells. Anticancer Res. 30(2):499-504, 2010
  83. Elamin MH, Shinwari Z, Hendrayani SF, et al.: Curcumin inhibits the Sonic Hedgehog signaling pathway and triggers apoptosis in medulloblastoma cells. Mol Carcinog. 49(3):302-14, 2010
  84. Von Hoff DD, LoRusso PM, Rudin CM, et al.: Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med. 361(12):1164-72, 2009
  85. Amente S, Lania L, Avvedimento EV, Majello B: DNA oxidation drives Myc mediated transcription. Cell Cycle. 9(15):3002-4, 2010
  86. Albihn A, Johnsen JI, Henriksson MA: MYC in oncogenesis and as a target for cancer therapies. Adv Cancer Res. 107:163-224, 2010
  87. Schulein C, Eilers M: An unsteady scaffold for Myc. EMBO J. 28(5):453-4, 2009
  88. Hatton BA, Knoepfler PS, Kenney AM, et al.: N-myc is an essential downstream effector of Shh signaling during both normal and neoplastic cerebellar growth. Cancer Res. 66(17):8655-61, 2006
  89. Pfister S, Remke M, Benner A, et al.: Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. J Clin Oncol. 27(10):1627-36, 2009
  90. Zhou L, Picard D, Ra YS, et al.: Silencing of thrombospondin-1 is critical for myc-induced metastatic phenotypes in medulloblastoma. Cancer Res. 70(20):8199-210, 2010
  91. Grotzer MA, Hogarty MD, Janss AJ, et al.: MYC messenger RNA expression predicts survival outcome in childhood primitive neuroectodermal tumor/medulloblastoma. Clin Cancer Res. 7(8):2425-33, 2001
  92. Cartwright P, McLean C, Sheppard A, Rivett D, Jones K, Dalton S: LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development. 132(5):885-96, 2005
  93. Baron M: An overview of the Notch signalling pathway. Semin Cell Dev Biol. 14(2):113-9, 2003
  94. Adesina AM, Nguyen Y, Mehta V, et al.: FOXG1 dysregulation is a frequent event in medulloblastoma. J Neurooncol. 85(2):111-22, 2007
  95. de Bont JM, Packer RJ, Michiels EM, den Boer ML, Pieters R: Biological background of pediatric medulloblastoma and ependymoma: a review from a translational research perspective. Neuro Oncol. 10(6):1040-60, 2008
  96. Fan X, Matsui W, Khaki L, et al.: Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res. 66(15):7445-52, 2006
  97. Wang J, Wakeman TP, Lathia JD, et al.: Notch promotes radioresistance of glioma stem cells. Stem Cells. 28(1):17-28, 2010
  98. Bouffet E, Perilongo G, Canete A, Massimino M: Intracranial ependymomas in children: a critical review of prognostic factors and a plea for cooperation. Med Pediatr Oncol. 30(6):319-29; discussion 29-31, 1998
  99. Andreiuolo F, Puget S, Peyre M, et al.: Neuronal differentiation distinguishes supratentorial and infratentorial childhood ependymomas. Neuro Oncol. 12(11):1126-34, 2010
  100. Grill J, Le Deley MC, Gambarelli D, et al.: Postoperative chemotherapy without irradiation for ependymoma in children under 5 years of age: a multicenter trial of the French Society of Pediatric Oncology. J Clin Oncol. 19(5):1288-96, 2001
  101. Modena P, Lualdi E, Facchinetti F, et al.: Identification of tumor-specific molecular signatures in intracranial ependymoma and association with clinical characteristics. J Clin Oncol. 24(33):5223-33, 2006
  102. Taylor MD, Poppleton H, Fuller C, et al.: Radial glia cells are candidate stem cells of ependymoma. Cancer Cell. 8(4):323-35, 2005
  103. Barton VN, Donson AM, Kleinschmidt-DeMasters BK, et al.: Unique molecular characteristics of pediatric myxopapillary ependymoma. Brain Pathol. 20(3):560-70, 2010
  104. Mallo M, Wellik DM, Deschamps J: Hox genes and regional patterning of the vertebrate body plan. Dev Biol. 344(1):7-15, 2010
  105. Magli MC, Largman C, Lawrence HJ: Effects of HOX homeobox genes in blood cell differentiation. J Cell Physiol. 173(2):168-77, 1997
  106. Cillo C: HOX genes in human cancers. Invasion Metastasis. 14(1-6):38-49, 1994
  107. Lamszus K, Lachenmayer L, Heinemann U, et al.: Molecular genetic alterations on chromosomes 11 and 22 in ependymomas. Int J Cancer. 91(6):803-8, 2001
  108. Ebert C, von Haken M, Meyer-Puttlitz B, et al.: Molecular genetic analysis of ependymal tumors. NF2 mutations and chromosome 22q loss occur preferentially in intramedullary spinal ependymomas. Am J Pathol. 155(2):627-32, 1999
  109. Stamenkovic I, Yu Q: Merlin, a “magic” linker between extracellular cues and intracellular signaling pathways that regulate cell motility, proliferation, and survival. Curr Protein Pept Sci. 11(6):471-84, 2010
  110. McClatchey AI, Saotome I, Mercer K, et al.: Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev. 12(8):1121-33, 1998
  111. Mazewski C, Soukup S, Ballard E, et al.: Karyotype studies in 18 ependymomas with literature review of 107 cases. Cancer Genet Cytogenet. 113(1):1-8, 1999
  112. Grill J, Avet-Loiseau H, Lellouch-Tubiana A, et al.: Comparative genomic hybridization detects specific cytogenetic abnormalities in pediatric ependymomas and choroid plexus papillomas. Cancer Genet Cytogenet. 136(2):121-5, 2002
  113. Reardon DA, Entrekin RE, Sublett J, et al.: Chromosome arm 6q loss is the most common recurrent autosomal alteration detected in primary pediatric ependymoma. Genes Chromosomes Cancer. 24(3):230-7, 1999
  114. Nijssen PC, Deprez RH, Tijssen CC, et al.: Familial anaplastic ependymoma: evidence of loss of chromosome 22 in tumour cells. J Neurol Neurosurg Psychiatry. 57(10):1245-8, 1994
  115. Kipreos ET, Pagano M: The F-box protein family. Genome Biol. 1(5):REVIEWS3002, 2000
  116. Li Q, Wang X, Lu Z, et al.: Polycomb CBX7 directly controls trimethylation of histone H3 at lysine 9 at the p16 locus. PLoS One. 5(10):e13732, 2010
  117. Zhang XW, Zhang L, Qin W, et al.: Oncogenic role of the chromobox protein CBX7 in gastric cancer. J Exp Clin Cancer Res. 29:114, 2010
  118. Firestein R, Cleary ML: Pseudo-phosphatase Sbf1 contains an N-terminal GEF homology domain that modulates its growth regulatory properties. J Cell Sci. 114(Pt 16):2921-7, 2001
  119. Suarez-Merino B, Hubank M, Revesz T, et al.: Microarray analysis of pediatric ependymoma identifies a cluster of 112 candidate genes including four transcripts at 22q12.1-q13.3. Neuro Oncol. 7(1):20-31, 2005
  120. Takemaru K, Yamaguchi S, Lee YS, et al.: Chibby, a nuclear beta-catenin-associated antagonist of the Wnt/Wingless pathway. Nature. 422(6934):905-9, 2003
  121. Puget S, Grill J, Valent A, et al.: Candidate genes on chromosome 9q33-34 involved in the progression of childhood ependymomas. J Clin Oncol. 27(11):1884-92, 2009
  122. Mack SC, Taylor MD: The genetic and epigenetic basis of ependymoma. Childs Nerv Syst. 25(10):1195-201, 2009
  123. Gonzalez-Gomez P, Bello MJ, Alonso ME, et al.: CpG island methylation status and mutation analysis of the RB1 gene essential promoter region and protein-binding pocket domain in nervous system tumours. Br J Cancer. 88(1):109-14, 2003
  124. Rousseau E, Ruchoux MM, Scaravilli F, et al.: CDKN2A, CDKN2B and p14ARF are frequently and differentially methylated in ependymal tumours. Neuropathol Appl Neurobiol. 29(6):574-83, 2003
  125. Alonso ME, Bello MJ, Gonzalez-Gomez P, et al.: Aberrant promoter methylation of multiple genes in oligodendrogliomas and ependymomas. Cancer Genet Cytogenet. 144(2):134-42, 2003
  126. Alonso ME, Bello MJ, Gonzalez-Gomez P, et al.: Aberrant CpG island methylation of multiple genes in ependymal tumors. J Neurooncol. 67(1-2):159-65, 2004
  127. Michalowski MB, de Fraipont F, Michelland S, et al.: Methylation of RASSF1A and TRAIL pathway-related genes is frequent in childhood intracranial ependymomas and benign choroid plexus papilloma. Cancer Genet Cytogenet. 166(1):74-81, 2006
  128. Lindsey JC, Lusher ME, Strathdee G, et al.: Epigenetic inactivation of MCJ (DNAJD1) in malignant paediatric brain tumours. Int J Cancer. 118(2):346-52, 2006
  129. Muhlisch J, Bajanowski T, Rickert CH, et al.: Frequent but borderline methylation of p16 (INK4a) and TIMP3 in medulloblastoma and sPNET revealed by quantitative analyses. J Neurooncol. 83(1):17-29, 2007
  130. Hamilton G, Yee KS, Scrace S, O’Neill E: ATM regulates a RASSF1A-dependent DNA damage response. Curr Biol. 19(23):2020-5, 2009
  131. Whitehurst AW, Ram R, Shivakumar L, et al.: The RASSF1A tumor suppressor restrains anaphase-promoting complex/cyclosome activity during the G1/S phase transition to promote cell cycle progression in human epithelial cells. Mol Cell Biol. 28(10):3190-7, 2008
  132. Guo C, Zhang X, Pfeifer GP: The tumor suppressor Ras association domain family 1A (RASSF1A) prevents dephosphorylation of the mammalian STE20-like kinases MST1 and MST2. J Biol Chem. 2011
  133. Donson AM, Birks DK, Barton VN, et al.: Immune gene and cell enrichment is associated with a good prognosis in ependymoma. J Immunol. 183(11):7428-40, 2009
  134. Dyer S, Prebble E, Davison V, et al.: Genomic imbalances in pediatric intracranial ependymomas define clinically relevant groups. Am J Pathol. 161(6):2133-41, 2002
  135. Mendrzyk F, Korshunov A, Benner A, et al.: Identification of gains on 1q and epidermal growth factor receptor overexpression as independent prognostic markers in intracranial ependymoma. Clin Cancer Res. 12(7 Pt 1):2070-9, 2006
  136. Squire J, Zhou A, Hassel BA, et al.: Localization of the interferon-induced, 2-5A-dependent RNase gene (RNS4) to human chromosome 1q25. Genomics. 19(1):174-5, 1994
  137. Player MR, Torrence PF: The 2-5A system: modulation of viral and cellular processes through acceleration of RNA degradation. Pharmacol Ther. 78(2):55-113, 1998
  138. Gilbertson RJ, Bentley L, Hernan R, et al.: ERBB receptor signaling promotes ependymoma cell proliferation and represents a potential novel therapeutic target for this disease. Clin Cancer Res. 8(10):3054-64, 2002
  139. Pfister S, Janzarik WG, Remke M, et al.: BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest. 118(5):1739-49, 2008
  140. Deshmukh H, Yeh TH, Yu J, et al.: High-resolution, dual-platform aCGH analysis reveals frequent HIPK2 amplification and increased expression in pilocytic astrocytomas. Oncogene. 27(34):4745-51, 2008
  141. Jacob K, Albrecht S, Sollier C, et al.: Duplication of 7q34 is specific to juvenile pilocytic astrocytomas and a hallmark of cerebellar and optic pathway tumours. Br J Cancer. 101(4):722-33, 2009
  142. Tabori U, Vukovic B, Zielenska M, et al.: The role of telomere maintenance in the spontaneous growth arrest of pediatric low-grade gliomas. Neoplasia. 8(2):136-42, 2006
  143. Tabori U, Ma J, Carter M, et al.: Human telomere reverse transcriptase expression predicts progression and survival in pediatric intracranial ependymoma. J Clin Oncol. 24(10):1522-8, 2006
  144. Kelland LR: Overcoming the immortality of tumour cells by telomere and telomerase based cancer therapeutics–current status and future prospects. Eur J Cancer. 41(7):971-9, 2005
  145. Wong VC, Morrison A, Tabori U, et al.: Telomerase inhibition as a novel therapy for pediatric ependymoma. Brain Pathol. 20(4):780-6, 2010
  146. Brassat U, Balabanov S, Bali D, et al.: Functional p53 is required for effective execution of telomerase inhibition in BCR-ABL-positive CML cells. Exp Hematol. 39(1):66-76 e1-2, 2011
  147. Rao YK, Kao TY, Wu MF, et al.: Identification of small molecule inhibitors of telomerase activity through transcriptional regulation of hTERT and calcium induction pathway in human lung adenocarcinoma A549 cells. Bioorg Med Chem. 18(19):6987-94, 2010
  148. George J, Banik NL, Ray SK: Knockdown of hTERT and concurrent treatment with interferon-gamma inhibited proliferation and invasion of human glioblastoma cell lines. Int J Biochem Cell Biol. 42(7):1164-73, 2010
  149. Zhu X, Yang N, Cai J, et al.: The intrabody targeting of hTERT attenuates the immortality of cancer cells. Cell Mol Biol Lett. 15(1):32-45, 2010
  150. Driggers L, Zhang JG, Newcomb EW, Ge L, Hoa N, Jadus MR: Immunotherapy of pediatric brain tumor patients should include an immunoprevention strategy: a medical hypothesis paper. J Neurooncol. 97(2):159-69, 2010
  151. Paugh BS, Qu C, Jones C, et al.: Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol. 28(18):3061-8, 2010
  152. Faury D, Nantel A, Dunn SE, et al.: Molecular profiling identifies prognostic subgroups of pediatric glioblastoma and shows increased YB-1 expression in tumors. J Clin Oncol. 25(10):1196-208, 2007
  153. Kelly JD, Haldeman BA, Grant FJ, et al.: Platelet-derived growth factor (PDGF) stimulates PDGF receptor subunit dimerization and intersubunit trans-phosphorylation. J Biol Chem. 266(14):8987-92, 1991
  154. Heldin CH, Ostman A, Ronnstrand L: Signal transduction via platelet-derived growth factor receptors. Biochim Biophys Acta. 1378(1):F79-113, 1998
  155. Andrae J, Gallini R, Betsholtz C: Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 22(10):1276-312, 2008
  156. Rowinsky EK: Targeting the molecular target of rapamycin (mTOR). Curr Opin Oncol. 16(6):564-75, 2004
  157. Jackson EL, Garcia-Verdugo JM, Gil-Perotin S, et al.: PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron. 51(2):187-99, 2006
  158. Vigil D, Cherfils J, Rossman KL, Der CJ: Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer. 10(12):842-57, 2010
  159. Daston MM, Scrable H, Nordlund M, et al.: The protein product of the neurofibromatosis type 1 gene is expressed at highest abundance in neurons, Schwann cells, and oligodendrocytes. Neuron. 8(3):415-28, 1992
  160. Viskochil D, Buchberg AM, Xu G, et al.: Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell. 62(1):187-92, 1990
  161. Gottfried ON, Viskochil DH, Couldwell WT: Neurofibromatosis Type 1 and tumorigenesis: molecular mechanisms and therapeutic implications. Neurosurg Focus. 28(1):E8, 2010
  162. Listernick R, Darling C, Greenwald M, et al.: Optic pathway tumors in children: the effect of neurofibromatosis type 1 on clinical manifestations and natural history. J Pediatr. 127(5):718-22, 1995
  163. Listernick R, Ferner RE, Liu GT, et al.: Optic pathway gliomas in neurofibromatosis-1: controversies and recommendations. Ann Neurol. 61(3):189-98, 2007
  164. Zhu Y, Harada T, Liu L, et al.: Inactivation of NF1 in CNS causes increased glial progenitor proliferation and optic glioma formation. Development. 132(24):5577-88, 2005
  165. Zhu Y, Guignard F, Zhao D, et al.: Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell. 8(2):119-30, 2005
  166. Zarghooni M, Bartels U, Lee E, et al.: Whole-genome profiling of pediatric diffuse intrinsic pontine gliomas highlights platelet-derived growth factor receptor alpha and poly (ADP-ribose) polymerase as potential therapeutic targets. J Clin Oncol. 28(8):1337-44, 2010
  167. Herceg Z, Wang ZQ: Functions of poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutat Res. 477(1-2):97-110, 2001
  168. Dungey FA, Loser DA, Chalmers AJ: Replication-dependent radiosensitization of human glioma cells by inhibition of poly(ADP-Ribose) polymerase: mechanisms and therapeutic potential. Int J Radiat Oncol Biol Phys. 72(4):1188-97, 2008
  169. Russo AL, Kwon HC, Burgan WE, et al.: In vitro and in vivo radiosensitization of glioblastoma cells by the poly (ADP-ribose) polymerase inhibitor E7016. Clin Cancer Res. 15(2):607-12, 2009
  170. Tentori L, Portarena I, Torino F, et al.: Poly(ADP-ribose) polymerase inhibitor increases growth inhibition and reduces G(2)/M cell accumulation induced by temozolomide in malignant glioma cells. Glia. 40(1):44-54, 2002
  171. Tong WM, Hande MP, Lansdorp PM, et al.: DNA strand break-sensing molecule poly(ADP-Ribose) polymerase cooperates with p53 in telomere function, chromosome stability, and tumor suppression. Mol Cell Biol. 21(12):4046-54, 2001

Your donations keep us going

The ISPN Guide is free to use, but we rely on donations to fund our ongoing work and to maintain more than a thousand pages of information created to disseminate the most up-to-date knowledge in the field of paediatric neurosurgery.

By making a donation to The ISPN Guide you are also indirectly helping the many thousands of children around the world whose treatment depends on well-informed surgeons.

Please consider making a donation today.

Use the app

The ISPN Guide can be used as a standalone app, both on mobile devices and desktop computers. It’s quick and easy to use.

Fully featured

Free registration grants you full access to The Guide and host of featured designed to help further your own education.

Stay updated

The ISPN Guide continues to expand both in breadth and depth. Join our mailing list to stay up-to-date with our progress.